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NONLINEAR INTERACTION OF DETUNED INSTABILITY WAVES IN

BOUNDARY-LAYER TRANSITION: 2. AMPLITUDE EQUATIONS

SangSooLee

DynacsEngineeringCo., Inc., NASA Lewis ResearchCenter Group

2001AerospaceParkway,Brook Park, OH 44142

Abstract

Thenon-equilibriumcritical-layeranalysisof asystemof frequency-detunedresonant-

triadsispresented.In thispartoftheanalysis,thesystemofpartialdifferentialcritical-

layerequationsderivedinPart1 issolvedanalyticallytoyieldtheamplitudeequations

whichareanalyzedusingacombinationofasymptoticandnumericalmethods.Numer-

icalsolutionsof the inviscidnon-equilibriumoblique-modeamplitudeequationsshow

thatthefrequency-detunedself-interactionenhancesthegrowthofthelower-frequency

obliquemodesmorethanthehigher-frequencyones.All amplitudesbecomesingular

at the same finite downstream position. The frequency detuning delays the occurrence

of the singularity. The spanwise-periodic mean-flow distortion and low-frequency non-

linear modes are generated by the critical-layer interaction between frequency-detuned

oblique modes. The nonlinear mean flow and higher harmonics as well as the primary

instabilities become as large as the base mean flow in the inviscid wall layer in the down-

stream region where the distance from the singularity is of the order of the wavelength

scale.



1. Introduction and summary of Part 1

The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-

triads in boundary layers with and without mean pressure gradient was obtained in Part

1 (Lee 1998b) 1 Each resonant-triad is composed of a fundamental plane wave and a

pair of subharmonic oblique modes. It is shown that the resonant-triads can nonlinearly

interact within the common critical layer when their frequencies are different by a factor

whose magnitude is of the order of the growth rates multiplied by the wavenumbers.

If the (fundamental) frequencies of the resonant-triads are sufficiently detuned, the

plane and oblique modes of each resonant-triad first nonlinearly interact between themselves.

Their growth is not affected by the existence of the other resonant-triads and the growth

rates are increased due to the parametric-resonance and self-interaction effects (of a single

resonant-triad interaction as shown by Goldstein & Lee 1992). The frequency-detuned

resonant-triads start to interact between themselves at the downstream position where the

instability growth rates become large enough to be equal to the magnitude of the phase

speed differences (of the plane waves). Eventually, as the magnitude of the growth rates

approaches that of the wavenumbers, most of the unstable waves whose scaled Strouhal

numbers are different by nearly O(1) can nonlinearly interact. In this downstream region,

the frequency range in which the resonant-triads can nonlinearly interact expands to cover

the entire range of linearly unstable waves.

The results of experimental study by Corke & Gruber (1996) (an extensive survey on

it appeared in parentheses in the last term in (3.1) of Part 1 must be replaced by _1, il2¢jYcj in front of

the square brackets in (5.6) of Part 1 must be replaced by iYc_, and ._0) in (7.60) of Part 1 must be replaced

by ,_o).
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resonant-triad interaction can be found in Kachanov 1994) and direct numerical simulations

by Liu & Maslowe (1998) in Falkner-Skan boundary layers are in good agreement with the

resonant-triad theory of Goldstein & Lee (1992). The parametric-resonance-, self- and

mutual-interactions and back-reaction are identified and shown to play major role in the

transition process, especially in the adverse-pressure-gradient boundary layer.

The system of partial differential critical-layer equations can be solved both analytically

(Goldstein & Choi 1989; Goldstein & Lee 1992, 1993; Wu 1992, 1995; Wu, Lee & Cowley

1993) and numerically (Lee 1997a). In this part of the study, the system of critical-layer

equations given in §7 of Part 1 will be solved analytically and the amplitude equations

(without the back-reaction term in the plane-wave amplitude equation) will be presented

along with numerical solutions. The analytical solutions of the critical-layer equations are

obtained in §2. The frequency-detuned non-equilibrium amplitude equations are presented

in §3 and their large frequency-detuning limit and asymptotic singular solutions are given

in §4 and §5, respectively. The viscous limit of the amplitude equations is obtained in

§6. The velocity jumps across the critical layer for the nonlinearly-generated low-frequency

modes are given in §7. Numerical solutions of the frequency-detuned quasi-equilibrium

(i.e. viscous-limit) amplitude equations are presented in §8. The frequency-detuned non-

equilibrium amplitude equations of the oblique modes are numerically solved in §9. The

concluding remarks are given in § 10.

In the rest of this section we will give a brief summary of Part 1 to allow the reader to

follow along without consulting Part 1 too often.

In the non-equilibrium critical layer the mean convection effect balances with the

growth and viscous effects. If we introduce the wavenumber parameter a and the local-



growth-rateparametera r to characterize the smal] wavenumber and the ratio of the small

local growth rate to the wavenumber, respectively, the generalized scaling of Lee (1997a)

can be written as (see also (I.2.2) - (I.2.4) where henceforth an I at the beginning of an

equation number will indicate an equation given in Part 1), for -J _<j .%<J,

a s = a[&_+O(ar)], _ = a[_+O(ar)], ca = a[_+O(o'r)], _j = a_3, Yc_ = ayes, (1.1)

xl = o'S+ix, (1.2)

# = a_-lp for 1 _< r _< 3 and tt = O(1) for 0 < r .%<1, (1.3)

where _ and ca are the (nearly equal) phase velocities of the two-dimensional and oblique

modes respectively, % is the streamwise wavenumber of the plane wave,/_ represents the

spanwise wavenumber of the oblique mode, yc_ is the critical level where the base mean-flow

velocity is equal to the real part of the phase velocity, %, ca, _ and Yc_ are order-one real

constants and # is the normalized mean pressure gradient. The subscript 3 is used to denote

the quantities of the 3th resonant triad. However, the subscript 0 for the quantities of the

'reference _ 0th resonant-triad will be omitted for notational simplicity.

The local-growth-rate exponent r is a function of the streamwise coordinate since the

instability growth rates are varying. The frequency-detuned non-equilibrium analysis of

this paper is valid for any value of r. Each analysis for a specific value of r covers different

stage of the non-equilibrium critical-layer evolution (see table 1 of Lee 1997a). A composite

solution could be obtained to cover a series of nonlinear stages.

The jth resonant triad is composed of a single two-dimensional mode and a pair of

subharmonic oblique modes. The phase speed of the plane wave is assumed to be nearly

equal to that of the oblique modes of the same resonant-triad. This resonance condition is

4
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satisfiedwhenthe propagationangleof the obliquemode8 defined as (also as (I.5.29))

0 = cos-1 (½_/_) (1.4)

is about 7r/3.

The nondimensional frequency or unscaled Strouhal number s3 of the fundamental two-

dimensional mode of the jth resonant-triad is equal to a3_ 3 and the scaled Strouhal number

s3 is given by (also by (I.2.5))

8 3 : O'2_3 ____-tY2_3C3. (1.5)

The difference between the scaled Strouhal numbers of the 3th and the 'reference' 0th

resonant-triads is given by (also by (I.2.6)) (Lee 1997b, 1998a)

._ = ._(1 + ar3X) or s 3 = s(1 + 1)_) for - J _<3 E J, (1.6)

where

=  rx. (1.7)

It was shown by (I.5.22) that the scaled phase velocity of the jth resonant-triad, _ is different

from that of the 0th resonant-triad, _ by O(a_), which is the additional resonance condition

that is required for the nonlinear interaction between the frequency-detuned resonant-triads

to occur in the common critical layer.

In the non-equilibrium critical-layer analysis, the Reynolds number is scaled as (als0

as (I.2.8))

A =- 1/(a3_+4aA), (1.8)

and the amplitudes are scaled as (also as (I.2.9)), for all 3,

e2a=a 4r+1, 53d=5o2 =a 3_+1, (1.9)



wheree2d, _3d and _0_ are the amplitude scalings of the plane wave, oblique modes and

nonlinearly-generated low-frequency (spanwise-periodic) modes.

The scalings given above are for the long-wavelength small-growth-rate instabilities

in boundary layers, for example, in the high-Reynolds-number adverse-pressure-gradient

boundary layer or in the downstream non-equilibrium stage of the Blasius boundary layer.

Their frequencies are of the order of the wavenumber scaling squared and their critical layers

are distinct from the viscous wall layer.

The multi-layer structure for the non-equilibrium critical-layer analysis was given in

figure 1 of Part 1. The unsteady flows in the main boundary layer (y = O(1)), the inviscid

wall layer (y = O(a)), and the viscous Stokes layer 2 (y = O(o.3r/2+1)) are governed by linear

dynamics. The viscous Stokes-layei effect was included in order to make the analysis valid

in the viscous limit. The solutions in the inviscid wall layer become singular at the critical

level, therefore, they have to be rescaled in the critical layer. The nonlinear interaction

between instability waves of the frequency-detuned resonant-triads first occurs within the

common critical layer whose thickness is of O(a_+l).

The streamwise velocity in the main boundary layer is given by (also by (I.3.1)) (Lee

1997b, 1998a)

J J

I_ -"- U _- £2d Z ReB3(xl)_3y(y'xl)eix3 -Jc _3d _ Re2A3(Xl)_f3(Y, Xl) eiXff2 cos Z 3

3=-J 3---J

+_02 Z Z Re_fo,2;3,g(y, xl, z, tl ) -{- "" ",

3 g

X 3 -- (T&_x - _2_t,

_y = O(o'a"12+_,kl/2) when _ << 1.

where

Z3- ff_3 z,

(1.10)

(1.11)

'1 |!



U is the base mean flow velocity, .4_ and/_3 denote the oblique and plane wave amplitudes,

respectively, and tl is defined by (I.5.24).

The jump equations are obtained from the requirement that the velocity jumps across

the critical layer which are calculated from the critical-layer solutions are equal to those

calculated from the external solutions. They must be solved with the system of critical-layer

equations to determine the unknown instability amplitudes.

The system of partial differential critical-layer equations along with the transverse

boundary conditions and the jump equations are presented in §7 of Part 1. They are

normalized in such a way that their nonlinear growth parts are free from any mean-flow-

dependent parameter apart from A. The normalized variables in the critical-layer equations

that are relevant to this part of the paper are, as in (I.3.19), (I.5.26) and (I.7.1) - (I.7.4),

, -- k3Tw_ 3 , 2 "- k-'-'_wX, "'IM- _7.3_. ft-

(1.1e)
1/2

A3/7)1;3(_ ) =_ (YcM) ebf_zl/4f l B_//)_;:_(:_) - Mei_xl/2J_ 3, (1.13)
kS _, 3, k4

where M - 8rYcZ2/(r36_ 3) as defined by (I.7.5), D_;_(_) - exp [½ia(Xo + _ox) - ij)_:] as

given by (I.7.6), k is a normalization parameter which can be chosen arbitrarily, Xo, Xo

and r/o are the coordinate origin shifts (see (I.7.58) and (I.7.62)), ro is the scaled Blasius

skin friction, rw denotes the total wall-shear stress (that is the sum of the Blasius skin

friction and the correction due to the mean pressure gradient) as in (I.3.15) and (I.3.16)

and ft = X + O(a) as in (I.5.23).



2. Solutions of the critical-layer equations

The analytical solutions of the partial differential critical-layer equations given in §7 of

Part 1 will be obtained in this section.

As in the previous studies (Wu et al. 1993; Goldstein & Lee 1993; Wu 1995; Lee 1997a),

the Fourier transform with respect to 77will be used,

/ oo 1 eik,(_(5,,k)dk ' (2.1)d2(_,k) = e-ik'Q(_, _)d_, O(_,7) =
oo co

where {_ = .T{Q} is the Fourier transform of Q. The velocity jump across the critical layer

can be obtained from the Fourier transform by putting k = 0,

Q(_,k = 0) = Q(_,_)d_. (2.2)
oo

In order to simplify the presentation we will put

_1 _ _" -- Xl, _2 -_ Xl -- X2, hs -_ rsin2 8, (2.3)

and

(2.4)

2.1. The leading-order equation

The solution of (I.7.8) which satisfies the transverse boundary condition (I.7.9) can be

obtained by taking the Fourier transform of (I.7.8), solving the resulting equation and then

taking the inverse Fourier transform of (_a)(y., k). The solution is

Q_I)= e-_',ro_(_,,7), (2.5)

where

F " -Inj(_2, rl) =- dxle'nZlC_(_z; O)_A:(xl). (2.6)
O0

',1 I ]



2.2. The second-order equations

In order to simplify the presentation we will only show the Fourier transforms of the solutions

of (I.7.10), (I.7.11) and (I.7.14) which satisfy the boundary conditions (I.7.20) and (I.7.21).

= -i_r dzl]_,l(_, xl, k),
oo

_- Sw(2) 1!. o,0;3j (_, k)

They are

(2.7)

fw(2) u(2) "k /*_
9v 1.'" 0,2;3,_,- 0,2;,,evJ (x, k) = r d- dxl {i, -(2¢1 + k)} [J3,e(_', xx, k) + K_,e($, xl, k)],

oo

(2.8)

where

:?'_,_(_, xl, k) _ _+-l(k;-_l)kH(k)A_+e(xl)A_(xl - k), (2.10)

F F_3,£(_, Xl, k) -_ 2hs_o(k; _1) dkl dk2G+(k)A_+t(Xl + kl)A_(xl + k2), (2.11)
OO OO

a_(k) = J(k_+_)/_H(-kl)H(-k_)_(k - kl + k_), (2.12)

_ =- _ + (k - k)/2, (2.13)

the summation notation is defined in (I.6.20) and the asterisk denotes the complex conju-

gate. The step function H(k) is defined by (Butkov 1968)

H(k)=l if k>0; H(k)=l/2 if k=0; H(k)=O if k<0, (2.14)

and 6(k) is the delta function (LighthiU 1960; Butkov 1968).



2.3. The third-order equations for the oblique-mode velocity jump

In order to obtain the velocity jump across the critical layer for the oblique modes, we need

to solve the equations (I.7.22) - (I.7.30) (but only the second part which involves V. (n) )L1;:[,_,m]

with the boundary conditions (I.7.34).

The linear growth term in the oblique-mode amplitude equation can be obtained by

solving (I.7.22),

•_ ]'fv(3L)l,1;:_nJ_"(_,k) = 4i7r_2)MeXk313H(-k)A:(5" + k), (2.15)

and the linear velocity jump becomes, by putting k = 0 (see (2.2)),

1" 1,1;y0_/J (X' k -- 0) = oo " 1,1;3._7'*'/J

Using (2.5) and (I.7.13) we can show that the solution of (I.7.23) becomes

= -k)A__:(x+k 2k),

(2.17)

and the velocity jump for the parametric-resonance term is

(5:, k = O) = --4r(cos 2 _)/__- fT/(3a)l." 1,1;:,lnnJ'[ J- dxlg;(_l; O)_Bl(xl)A__o(2xl - _.). (2.18)

The nonlinear part of the oblique-mode velocity jump is obtained by solving (I.7.24)

to (I.7.30). It is easy to show from (I.7.24) and (I.7.29) that

.T- f_7(3b) "1 (;_, k ---- O) ---- jc-/V(3g) "1. (E', k -- O) -- O.
l. " 1,1;y0r_J [ " 1,1;3,tr/rjJ

The solution of (I.7.25) can be obtained by using (2.7) and (1.7.10),

(2.19)

F C= O) = 7rm_ 1:- _ dxl
dx2K(3C)A3_t(xl)At+m(x2)A_(xl+x2 - _),

(2.20)

10
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where

g(3c) = _2" (41; 42)413. (2.21 )

From (I.7.26) along with (2.5), (2.8) and (I.7.11), we can show that

oo

+_)(3d), (2.22)

where

[ j0 ]K_ 3d) = _2(¢1; ¢2)¢1 (41 -_- (2)(1 -]- 2hs d(3_2-((3; ¢1)(¢1 + ¢2 - (3) , (2.23)

_)(3g) = _ dxl dx2 dr/ dk3gb [J_,,_(xl, x_, k3) + K:_,r_(X,, z2, k3)], (2.24)

with (2.6), (2.10) and (2.11). Integrating by parts and changing the order of integrations

using

I'_L;L"dxl dx2 = dx2 dxl, (2.26)

(2.24) can be rewritten as

+ K_31J)As-t(Zl)At+m( z2)A*m(Xl + x_ - _)], (2.27)

where

+ r.(3d) = Gc((l,(2 O; 1)+ _+(¢1,¢2,0; 1), (2.28)_n_"(sd)= _c(¢1, O, o; 1) + G_ (G, O,o; 1), "m

fo_o(¢°,_b,¢_;a) - d¢_g_{a&[¢°+ 2_ + 3(_- _)] + (1+ 2i&_)¢2_}, (2.29)

11



/0_' /"+_ _, {5_(_o;_d)_o+ _(¢4; _d)_o_(_, Cb, ¢c; h) - 2h, d¢3ge Jo

[_÷_a(_,- _o-_)_]}, (_.3o)

The solutions of (I.7.27) and (I.7.28) can be given as, using (2.5), (2.9) and (I.7.14),

P
_," 1,1;j,l,,_,,j ('_, k = 0) = J-oo

dx2

[¢3_7(0; 1)At_m(x2)A__,(x2 + x3- ._) + 2h. /_: dx,e-X((_+_)/3G_(_e;-1)

* XA*-rn(x4)Ae_j( 3 + X4 -- X)] , (2.33)

where _3 =- 22 - x3, ¢4 - x3 - x4, the minus superscript in G}: is for the (3e) component

and the plus one is for the (3f) component and we have put

_:(_o;5)=2h,_-_(_+_+_)/°(_,_? +_), (2.3_)

Using (2.26) and integrating by parts, (2.33) can be rewritten as

¢- f_,(3_,3.f) _ (5:, k = O) = 2_'h_ dx_ dx: (x_
" "t" _,_;:,t ,,,_v,_J oo

A;__(_,+ _ - _)+ K_'_)A_-_(_I)A_(_)AL_(_I + _ - _)], (2.36)

where

f06 f0 ¢_

(2.37)

12



_...,)___,3..,_÷]0,1._..[_,_.(1_,_°_)__°_.], (2.38)

(2.39)

the (-) and (+) signs of (T) in (2.37) and (2.38) are for the (3e) and (3f) components,

respectively, and _ and _b are defined in (2.32).

We can write the velocity jump obtained from (I.7.30), along with (2.5), (2.8) and

(I.7.11), as

Iv(3n) 1 (_, kJr L" 1,1;3,l,mn_J F L= O) = 2_rhs dXl
O0

dx:K_3h)A,+e(xl)Am(x2)A_+m(Xl + x2 - 2)

+/) (3h) , (2.40)

where

= E2((1; _2) ejO_2 d_3_2(6; _1)(1((2 - 6), (2.41)K_ 3h)

;L/ L])(3h) = dxl dx2 dr] dk3g+lC_,,_(Xl, x2, k3), (2.42)
OO OO

and ]C_,m and g+ are defined in (2.11) and (2.25). The above equation (2.42) can be rewritten

as, using (2.26) and integrating by parts,

-FK_3Ih)A3+f(I1)Am(I2)A_+m(I1 $ x2- 2)], (2.43)

where

K(3h) = 62(;1 0,0;-1), _(3h) = G2(_1,;:,0;_1),lla ' "_" lib (2.44)

and G+ is defined in (2.30).

13



2.4. Other third-order equations

In order to obtain the mutual-interaction term in the plane-wave amplitude equation, we

need to know the following solutions of the other third-order equations.

The solution of the first part of (I.7.23), along with (2.5) and (I.7.13), which satisfies

the boundary condition (I.7.34) becomes

.._. I'. (3a) "1 _27re_k313 r,-,(3,_),_
t wi,_;,,d (_,k) = [_'i,_,,,_t=+ k)H(-k) - i(cos 2 0) L °° d_:e-217¢3/3_:H(k)

Bt(_ + k - k)A___(g" + k - 2k)]. (2.45)

Equation (I.7.37) subject to (I.7.43) is solved with (2.5) and (I.7.13),

mt'" 3,_;,,<,"3,_,,_..s(_,k) = _-(cos_o)

n_(_b)A,_e(_b + k), (2.46)

where

ib = e + (k - _)/3, (2.47)

p(3,_)
and we have used the fact. 3,1;_,e = 0 which is obtained by matching the solution of (I.7.42)

with the outer solution.

2.5. The fourth-order equations for the plane-wave velocity jump

The velocity jump for the plane wave can be obtained by solving (I.7.44) to (I.7.51) with

the transverse boundary condition (I.7.54). The velocity jumps which produce the linear

and mutual-interaction terms in the plane-wave amplitude equation will be presented. The

back-reaction term in the plane-wave amplitude equation that is quartic in the oblique-mode

amplitudes (Wu 1995) will be considered in future.

14
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Thelinearvelocityjump is obtainedfrom (I.7.44),

_r Irr(4L) l (5: k = O) = V_,o;_,av]" 1." 2,0;3V J ,
= 2iTra_B_(5:). (2.48)

u(4b)
The mutual-interaction term is determined by considering the components, v 2,o;3,evand

rT(4b)
rr(4d) rr(4c) in (1.7.49). The velocity jump by the -2,o;3,ev componentv2,0;3,e,_ in (I.7.45) and v2,0;_,e,,,_,

becomes, using (2.7), (I.7.10) and (I.7.13),

// £
m:-I

dx2K (4s)B_-e(xl)Ae+m (x2)

A_(2xx + x2 - 25:), (2.49)

where

K(4b) _-- e-4X((l+(2)(_3, (2.50)

and (I.6.20) is used. With (2.7), (I.7.10) and (I.7.13) it is easy to show that

.rfu(4_) "t(5:,k = o) = o. (2.51)l" 2,o;3,t, J

tr(4c)
The jump by the v2,0;_,t,mn component, obtained using (2.5), (2.17), (2.45), (2.46), (I.7.31)

and (I.7.41), can be written as

v frr(ac) 3, (5:, k = 0) = 4r dx: dx2K I Aj_t(xx)Bm(x2)Am_e(xl + 2x2 - 25:)
" 1." 2,0;3,e,rnrl J

+ )(at) 7)(4c) (2.52)"' I I "Jr v, i i I

where

K_4¢)= e-X[<,C<:+<,):+:<_/_]6(6+ _:)_, (2.53)

UI(4_) -_ f_'_"I = 7rhs dx: f__1oodz2 f'_z2oodzse-X(:2<_+3:'_+_+2¢_)/9(:(3[1+ _'3(2_j- (:)_-2]

Bm(x2)Ae-m(x3)A___(2x2 + x3 - 25:), (2.54)
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H = 87rhs dXl dx2 dx3e-)'(4i_+¢]-_+2_)/3_k¢l 1 - (3¢1 + 2_2)_k_ -2
oo

A_-I(x2)Bm(x3)Am_l(x2 + 2x3 - 22), (2.55)

_ = 3¢'2"1-¢3, _j ------ _i "_- 2ffl, _k ---- _j -- _2, _l ---- 2ffl "_- ¢2, (2.56)

Using (2.26) and integrating by parts, (2.54) and (2.55) can bealong with _3 = z2- x3.

rewritten as

UI(4c) f;¢¢ dxl f?: C)Bm(xl)Ae__m(x2)ar___(2XaI = 4rh, dx:K_4i + x2- 22), (2.57)

,)(4_) iirh, dxl dx2 K_I_I) B_(zl)A__e(x2)A;_e(2xl + z2 22)
"Ill -- _

* (2.5s)+KIIIbA;-_(xl)Bm(x2)A,,__t(xl + 2z2 -

where

---- h'(4c) = _h+(¢l _2, 0; 1, 1, 1),,,_'(4c)zl Gh(0, ¢2, ¢3; 3, 1, 1), "" Ilia K(4C) = a+(_1, 0, 0;1, 3 2),lIIb

(2.59)

_h:l:(_'a, Cb, ¢c; (1, b, c) =- (2/a) e-(_i/3)[_+{2-(-2)_}(_+_] (2_a + _'2) [(¢1/a)(3¢1 + 2b¢2)

+ fo ¢' d¢3 exp {:k(2hXl3)[(¢'3 :F 3_,)_ + 2¢2¢2 T (3IS)_g'b_3] } {_a- (2/h)(2_, + ¢'2)

[1+ _,(3_,+2_b--¢3+4_)(2¢,--2_a+_b+_3)]}], (2.60)

and _a and _l are defined in (2.32) and (2.56).

3. Amplitude equations

The non-equilibrium amplitude equations for the frequency-detuned resonant-triads

are derived by substituting the velocity jumps across the criticaJ layer obtained in §2 into

the jump equations (I.7.55) and (I.7.56).
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By substituting(2.16),(2.18)- (2.20),(2.22),(2.36)and (2.40)alongwith (2.2) into

(I.7.55),weobtain the frequency-detunedamplitudeequationfor the obliquemodes(see

also(4.2)),for -J _<3_<J,

/_ dxlI(l(_,xa)B_(xl)d;(2xl - _)(cost? + c-_s_)[A,_ + {½(3X-_o)--mob} A,] = i; _

i J F _4-7(sec_ O) _ dxl dx2 [K2(_,xa,z2)A,(xl)Ae(x2)A_(Xl + x2- Y_)
_=_ j c¢

+g3(_, xl, x2)dl(xl)d3(x2)d;(Xl + z2 - _)], (3.1)

where _ and )_ are defined by (1.12). The frequency-detuned plane-wave amplitude equation

is similarly obtained by substituting (2.48), (2.49), (2.51) and (2.52) along with (2.2) into

(I.7.56), that is (see also (4.3)), for -J _<j _<J,

- - = --- dza dx2 [g4(:_, Xl, z2)Bj(zl)A_(x2)
7" f oo J-oo

A;(2xl + - + + 2z2 -

+(back - reaction - term). (3.2)

The oblique-mode amplitude A 3 and the plane-wave amplitude B_ are normalized by (1.13).

At the leading order, 7- (= _/(r_Yo) as defined by (I.7.18)) becomes unity and 0 given by

(1.4) becomes 7r/3. The transverse-coordinate origin shift 770can be chosen to be zero as in

(I.7.58). The analysis allows the value of J in (3.1) and (3.2) to be very large (as long as the

magnitude of JX in (1.6) is O (1), see also §4). The upper and lower limits of the summations

could also be arbitrary (i.e. _J_j_ ). The amplitude equations (3.1) and (3.2) (also (4.2) and

(4.3)) are valid for any value of the local-growth-rate exponent r in the range 0 < r _< 3.

The analysis can be extended to include higher-order effects in the amplitude equations

(3.1) and (3.2) with minor modifications in their coefficients, which may be required for

17



goodcomparisonwith experiments(seeWundrow,Hultgren& Goldstein1994for excellent

comparisonof the linear growth rate).

The kernel functions, K1 for the parametric-resonance term,/(2 and K3 for the self-

interaction term and/(4 and Ks for the mutual-interaction term, are given by

K1 = e-2_(x-xl)3/3(x - Xl) 2, (3.3)

K_= g (3c) 2T(sin_o)r_..c3d_K_3_) K_3S) ,.._3_)1-- ["'IIa -- -- + "'xxa J, (3.4)

_.---(3h) ]
K3= K_ 3d)- 2rCsin2 8)rw(3d) K_ 3e)- K(31) - K/(3h) +"IIb] (3.5)L'"lib --

r_(4c)1K,,= 2K("_+ T(sin_e)[K_°_+ ...,oj, (3.6)

Ks = K_ 4c) + r(sin 2 v/mr_(4_),,IZVb, (3.7)

where _ is defined by (1.12). The O(1)-viscosity kernel functions for the self-interaction and

mutual-interaction terms, which are obtained by substituting (2.21), (2.23), (2.28), (2.37),

(2.38), (2.41) and (2.44)into' (3.4) and (3.5) and by substituting (2.50), (2.53) and (2.59)

into (3.6) and (3.7), respectively, are given Appendix A. The sum of K2 in (A 1) and K3 in

(A 2) is the same as the self-interaction kernel function of the single-frequency (or single-

resonant-triad) interaction given in Wu et aI. (1993). The last terms which involve ¢1_'2 in

(A 1) and (A 2) appear with opposite signs in/(2 and K3.

The oblique modes react back on the plane waves and the corresponding back-reaction

term is quartic in the oblique-mode amplitudes (Goldstein & Lee 1992; Wu 1992, 1995).

The kernel functions for the back-reaction term will be analyzed in future.

In the inviscid limit (_ = 0), the kernel functions become

K1 = (_ - zl) 2, C3.8)

18
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/

2Tsin 2
\

t_ =V - e)(_- Xl)3_ (3.9)

K3=(1-2rsin2O)(_-xi)(_,-x2)[_-xi+2r(sin2O)(x,-x2)], (3.10)

K, = 2 (1 - 7"sin 2 8) (_ - Xl) 3, (3.11)

K5= (1- rsin:e) (_- xl)(_- x:)(2_- xl - =:). (3.12)

The linear growth rates of the oblique and plane waves, nob and g2d, are

sec8
] , t_2d = 7aiM 4- _ ,e;oS -- 4(1 + cos 2 8) [-_ 1M + _ (2a'M"oX) 1/2 1 _(2) _ (a't_rwX) 1/2 (3.13)

where the real constant k is a normalization parameter which can be chosen arbitrarily,

T_o is the total wall-shear stress (see (I.3.15) and (I.3.16)), _(2) is defined by (1.12) and'_IM

(= 0/(r_) as defined by (I.7.57)) is unity at the leading order. The last terms in (3.13) are

due to the viscous Stokes-layer effect. Their magnitude is O(_ _/2) when the critical layer is

governed by the non-equilibrium dynamics, but it becomes O(1) in the viscous limit where

= o(_,-').

When the upstream flow is composed of a system of resonant-triads of linear instability

waves (Goldstein & Lee 1992; Lee 1997a) the upstream boundary condition becomes, as in

(I.7.59),

A_---,5_exp[(e;ob-½02)_2], B3 _ b_exp [(_2d -- i0)_)2 ] as _ .-,. -oo, (3.14)

where the complex initial amplitudes h_ and b_ are given by (I.7.60). In the later down-

stream stage of the critical-layer evolution, the upstream boundary condition for the non-

equilibrium amplitude equations in that local streamwise region is obtained by matching

with the solutions of the preceding critical layer stage (Wundrow et al. 1994; Goldstein

1994; Wu, Leib & Goldstein 1997; Lee 1997a). The amplitude equations (3.1) and (3.2) are
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valid for any valueof the local-growth-rateexponentr (it wasassumedthat 0 < r _<3 in

Part 1).

Thestreamwiseevolutionof theinstabilitywavesisdeterminedbysolvingthefrequency-

detunedamplitudeequations(3.1)and(3.2)alongwith theupstreamconditions(3.14).The

numericalsolutionsof theseamplitudeequationswill begivenin §9.Thefrequency-detuned

self-interactiontermis composedof twosummationsin this multi-resonant-triad-interaction

case.Thewavenumberdifferencesbetweentheinstabilitywavesof the0th and3thresonant-

triads (that aregivenby (I.5.21))producethe termsthat involveJRin (3.1) and(3.2). By

putting J = 0, we can recover the previously obtained amplitude equations (Goldstein _z

Lee 1992; Wu 1992, 1995; Wu et al. 1993; Lee 1997a). The nonlinear part of the amplitude

equations (3.1) and (3.2) includes only one mean-flow-depenclent parameter _.

In the later downstream stage of the non-equilibrium critical-layer evolution, the local-

growth-rate exponent r becomes smaller than in the upstream non-equilibrium stage. The

mean-boundary-layer flow develops on the long viscous length scale (x_ given by (I.2.1)).

The boundary-layer thickness and the mean pressure gradient are nearly unchanged (within

the order of approximation) over the region where the nonlinear interaction, or a series of

nonlinear interactions, takes place. If we let the local-growth-rate exponent be ro in the

(first) upstream non-equilibrium critical-layer stage, the Reynolds number, mean pressure

gradient and frequency detuning are scaled by, from (1.8), (1.3) and (1.7),

1

RA o'3r°+4)_°' ]A= a _° 1#o , )_ = a_°Xo (3.15)

where _o, Po and Xo are O(1) (of course they could be smaller). In the downstream region

where the local value of r is smaller than ro (we have only used the first equation in (1.3)
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for the simplicity),A,# andX become

= a3('°-')Ao, P = a'°-'Po, X = a'°-'Xo • (3.16)

Therefore, the viscosity, mean pressure gradient and frequency detuning become less im-

portant in the downstream non-equilibrium region where r < ro (Wundrow et al. 1994).

From (1.12), (3.13) and (3.16), we can show that the linear growth rates _ob and _2d

become negligibly small when r is smaller than ro (where ro _< 3). Therefore, in this

later non-equilibrium critical-layer stage, the instability wave amplitudes of the frequency-

detuned resonant-triads are determined by the integro-differential equations (3.1) and (3.2)

with the linear terms omitted and the kernel functions given by their inviscid limits.

4. Large frequency-detuning limit

If we put

fi'3 = Aa exp(_3_'), B, = B, exp(i325 ), (4.1)

the non-equilibrium amplitude equations (3.1) and (3.2) can be rewritten as

(cosS+ lx){A__(±_o+_ob)Aa}k2 i/e_-- = -- dXl/(1.B3(Xl)A;(2Xl- .T)
cos,, r o¢

*=-J,t#s

_75. (i_o + a;2d)_ _ 4i// /f_ _= _ =. "- = --- dxl dx2 [II4B_(xl)A_(x2)A3(2xl + x2 - 25)
T oo
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whereK1 - K5 are given in the previous section and K6 is given as, in the inviscid limit

(see Wu 1995 for finite viscosity one),

K6= 2v(sin28)(_ [(1 + 2rsin28)((1 + (2) 2 +((1 +(2+(3) 2] + (1-2rsin28)(1

We have put (3 -- z_ - z3 and (1 and (2 are defined in (2.3).

The multi-mode-coupling terms Ms and Mm (Mb is not derived in this paper), be-

tween the 3th and lth resonant-triads, are given by

+e2×O-t)(x-X2)K3At(xl)A_(x2)A_(Xl + x2 - _), (4.5)

.Mm = ei_O-O(_-X_)K4B_(xl)Ae(x2)A._(2Xl+ x2- 2_')

+e_0-_)(_-_)K_2_(_)_(_)_;(_ + 2_- 2_), (4.6)

When 1)_(3- t)l is large, we can show that, by integrating by parts in the inviscid case,

/__oodxlLdX2.A/[s 96 (l--2Tsin20 =_-_ _----_ f'= ).A_(_)j_ood=_l]K=,)12+o([_(3-e)]-s), (4.7)

/ff_,_ dxl L dx2.Mm 12 (1- vsin 2 0)_(_)/-_¢0 dxl'A_(xl)[2+ 0([_(J- l)]-s). (4.8)=

The effects of the multi-mode-coupling terms, A/ts and _/[m in (4.2) and (4.3), become neg-

ligibly small when the frequency difference becomes very large (we assume similar behavior

for the Mb term).

In the real flow, there are infinite instabilities whose frequencies and wavenumbers

are continuously varying. The individual criticaJ layers are merged from the beginning
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(of nonlinearprocess).The truncatedfinite summationin (1.10),(3.1), (3.2), (4.2) and

(4.3) is anapproximationto the infinite series.Theinstabilitywaveswhosewavenumbers,

frequenciesandlineargrowthratescanbescaledasin §1areonlyincludedin thesummation.

The amplitudesof the other linearmodes(i.e. of veryhigh/low frequencies)havebeen

assumedto be too smallto play anymajor rolein the nonlinearprocess.However,it is

reasonableto expectthat the growthof theseothermodeswill beeventuallygovernedby

the frequency-detunedinteractionin the downstreamregionwheretheir nonlineargrowth

ratesbecomemuch larger than the linear growth rates (that are different from (3.13)).

The amplitude equations (4.2) and (4.3) (also (3.1) and (3.2)), that are obtained when the

magnitude of J_ is of O(a") (see (1.6)), can still be used, along with (4.7) and (4.8), for

larger value of J_ (but J:_ still smaller than O(1)).

5. The singular solution of the amplitude equation

The solutions of the amplitude equations (3.1) and (3.2) always develop a singularity

at a finite downstream position xs as will be shown in §9 and was shown in Goldstein &

Lee (1992), Wu (1992) and Lee (1997a) for the single-resonant-triad interaction. Near the

singular point where the exponent r is sma_er than in the upstream region, the linear terms

and the viscosity effect become of higher order as explained in the previous section. The

amplitudes are then determined by (3.1) and (3.2) with the inviscid kernel functions (3.8) -

(3.12) and with the linear terms neglected. The solutions to these equations can be written

as (Goldstein & Choi 1989; Goldstein & Lee 1992; Wu 1992), when _ ---, _s,

A3 = a_/(_'s - _.)3+i¢j, B3 = b0/(xs - _)4+2i¢; for 3 = -J,..-, J, (5.1)
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where¢3is a realconstantand63andb3 are complex constants.

By substituting (5.1) into the inviscid amplitude equations (with the linear terms omit-

ted), we can show that

(cos0+ 1 )3+i¢3_ i b_Dp(¢j)_i(1-2rsin20)_ I_el2D (_l, Ce), (5.2)co-T_ la=l= _-a_ 4_'(cos=o) la=l= _"_='g=-J

4+2i¢3 4i.1 J latl 2n _.,..,.
i_,t2 = -T( - r sin 2 0) _ T-_Tp_.,_v_3, _'e) + (back - reaction - term), (5.3)

t=-J

where the integrals Dp, Ds and Dm are given in Appendix B. The above equations can be

solved numerically to determine 1_31, ]b:l, ¢3 and the argument of _:/_2. As in the single-

resonant-triad case (Goldstein & Lee 1992), (5.2) and (5.3) fix only the argument difference

arg(b:/_: 2) and leave the individual arguments arg(_:) and arg(b:) undetermined.

From (1.9) and (1.10), we can show that the streamwise velocities of the plane and

oblique modes, in the inviscid wall layer, become of the order of the base mean flow in the

downstream region where _s - 2 is O(a_).

From (5.1) along with (1.2) and (1.12), we can show that, as ._ _ g's,

A_____== a_+l kr_(_A_e - a_+l kr_5 (3 + i¢:) B:___E== a_+1 kr_&B3e _ a_+l kr_5 (4 + 2i¢3)
A s 2A: 2 (xs - x) ' B3 2B3 2 (xs - _)

(5.4)

Near the singular point, _ - _ becomes small so that we can put

_, - _ = o" (_, - _), (5.5)

where the magnitude of :_ - _? is of O(1). If the local growth rates are expressed as

A:z/Aj = O(a _+1) and B_x/B 3 = O(a_+l), then it follows from (5.4) and (5.5) that the

local value ÷ is given by

÷ = r - n, (5.6)
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whichshowsthat the local-growth-rateexponent_ becomessmallerasthe distance_s-

becomesshorter.

Sincethecritical-layerthicknessin thenon-equilibriumanalysisisof the sameorderas

thegrowthrate,thecritical layerbecomesthickerasthe singularpoint isapproached.The

thicker critical layerleadsto a widerrangeof instability-wavefrequenciesoverwhich the

frequency-detunednonlinearinteractioncanoccur(see(1.6)). All instability waveswhose

scaledfrequencydifferencesarenearlyO(1) can nonlinearly interact right before the scalings

of this analysis break down, which occurs at the streamwise position where the critical layer

is as thick as the inviscid wall layer and the unscaled distance from the singular point is of

the order of the wavelength scale (Goldstein & Lee 1992; Wu et al. 1997).

6. Viscous-limit quasi-equilibrium amplitude equation

The quasi-equilibrium amplitude equations for the multi-resonant-triad interaction will

be obtained by taking the viscous limit (Wu et al. 1993) of the finite-viscosity amplitude

equations (3.1) and (3.2). Mankbadi, Wu & Lee (1993) and Wu (1993) derived the quasi-

equilibrium amplitude equations for the single-resonant-triad interaction by considering the

Tollmien-Schlichting waves in the upper-branch-scaling regime in the Blasius and favorable-

pressure-gradient boundary layers, respectively.

In the viscous limit as _ _ co, the kernel K1 given by (3.3) becomes highly concen-

trated around _ = xl and the parametric-resonance term Np in the oblique-mode amplitude

equation (3.1) becomes (Goldstein _: Lee 1993)

i

Np = _T_ BJ(_.)A;(._). (6.1)
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Theviscouslimit ofthefrequency-detunedself-interactiontermsshowsthat theleading-

ordertermsareproducedby theseconddouble-integralterm (whosekernelfunctionis K3)

in (3.1). Following Wu et al. (1993), we can show that the viscous limit of the integral

which involves the second term 2hs f0¢2d(3(...) in (A 2) becomes

i 2 (1_ 1/3 J /)-- _2A4/3(tan 0) \T8) r(½) _ A_(_) dxlA3(xl)A;(xl), (6.2)
l----J

and the viscous limit of the integral which involves the fourth term Y_-(_1,_2,(3]0,_2) in

(A 2) becomes

iv . (1 1/3 J ffA_--_7_¢tan 8sin20)\_-_] r(½) _ At(5) dxlAa(xl)A_(xl), (6.3)
e-----J oo

where r(1/3) = 2.6789 is the Gamma function. The above two terms in K3 are originated

from K_ 3d), r"(3a) K_ 3h) and w(3h)"'11b , _I1b given by (2.23), (2.28), (2.41) and (2.44). The nonlinear

interactions of the rT(2) v(2) and W, (2) components, as given by (I.7.26) and (I.7.30),
vO,2;3,f' " 0,2;3,f 0,2;j,f

are responsible for the velocity jumps of the (3d) and (3h) components in (2.22) and (2.40)

(Wu et al. 1993). This is consistent with the results of the quasi-equilibrium critical-layer

analyses by Mankbadi et al. (1993) and Wu (1993) who showed that the spanwise-periodic

mean-flow distortion is responsible for the velocity jump across the diffusion layer. The

magnitude of the viscous limits of the integrals which involve the other terms of K3 in

(A2) and the kernel K2 in (A 1) are all of O(A -s/3) or smaller (Wu et el. 1993). The

frequency-detuned self-interaction term Ns becomes as _ _ oo, from (6.2) and (6.3),

i ( O/ (tan2 O) (1__) 1/3 J ; .N,=-2-_ 1-2rsin2 F(½) _ A_($) dxlA_(xl)A_(xl).
f=_j oo

(6.4)

Similarly, we can show that the mutual-interaction term Nm in the plane-wave ampli-
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rudeequation(3.2)becomesin the viscouslimit,

4i J

_m =---_cm _ B3(_)IA_(_)I_, (6.5)
g_--J

where Cm is a real constant that can be obtained by integrating the kernel functions K4

and K5 given by (A 3) and (A4) with ), = 1 for the exponential terms and with 5rb_ that is

redefined as not to include the last term A((1 - (3)(--.)(...) in (A 7),

; f:[ ]C,_ : dxl dx2 /Q(_,xl,x21A = 1;_'_) + Zs(2.,xl,x21_= 1;9 v+) • (6.6)
OO

We can assume, from the back-reaction term in the single-resonant-triad case given by

Wu (1995), that the viscous limit of the back-reaction term Nb is

=o N), (6.7)Nb

with N larger than 5/3, which has been indirectly proved by the quasi-equilibrium analyses

of Mankbadi et al. (1993) and Wu (1993).

With (6.1), (6.4), (6.5) and (6.7), the amplitude equations (3.1) and (3.2) become in

Bss: + 032 - a2d) B3 = O,

the limit as A _ oo,

where aob and _2d are given by (3.13) and we have put 7?°= 0 (see (I.7.58)).

If we rescale the viscosity parameter and the amplitudes as in Lee (1997a),

(6.8)

(6.9)

i = a"_, "43 ----a2r/3A3, B3 = a_A3, (6.10)
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the aboveequations(6.8)and (6.9) canbe rewritten as(seealso(6.17)and (6.18)),for

j = -J,...,J,

(cos0 + c@s0)['43_ + (½32-kob)A3] = _r_B_(_)A_(_.)i.-.

i
(1 - 2v sin2 0) (tan2 8) \_-_/ r(½) _ dx,ft,(x,)ftl(x,), (6.11)2_/3

_____j

Bje + (iJ2 - _2d)Bj _ 0, (6.12)

with

_ /" -,\ 1/3sec0 r2(2) (2kvw_) 1/2 1_(2) IkrwA) , (6.13)
kob = 4(1 + cos 2 0) [r 1M Jr _ ' k2d "B- T 1M "}-

where the normalization parameter k can be chosen arbitrarily, v and ( (as defined by

(I.7.18) and (I.7.57)) are equal to one, )? and _(2)_IM are given by (1.12) and r_ is the total

wall-shear stress (see (I.3.15) and (I.3.16)). The linear growth rates kob and k2d were

obtained by substituting (6.10) into (3.13). As we expected, the viscous Stokes-layer effect

becomes O(1) in the viscous-limit linear growth rates.

The streamwise evolution of a system of frequency-detuned resonant-triads that are

composed of the ToUmien-Schlichting waves is determined by the quasi-equilibrium ampli-

tude equations (6.11) and (6.12). The value of the exponent r is 3 for the Blasius boundary

layer and 1 for the favorable-pressure-gradient boundary layer. These amplitude.equations

(6.11) and (6.12) can also be directly derived from the frequency-detuned quasi-equilibrium

critical-layer analysis (Mankbadi et al. 1993; Wu 1993). The quasi-equilibrium critical-layer

scaling can be obtained by rescaiing the non-equilibrium scaling given in §1 using (6.10)

(see table 1 of Lee 1997a). The equations (6.11) and (6.12) (also (6.17) and (6.18)) for the

frequency-detuned multi-resonant-triads reduce to the amplitude equations of Mankbadi et

al. (1993) and Wu (1993) if we put J = 0.
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Theplanewavesgrowlinearly,i.e.

Bs =/_s exp [(k2d -- i?)_) _'], (6.14)

in the entire quasi-equilibrium region. The streamwise evolution of A_ can be obtained by

solving (6.11)with the linear upstream condition

As-__exp[(_ob-b_t_] • (6.15)

The complex constants as and b_ are given by the equations similar to (I.7.60). The results

of the numerical compntations are presented in §8.

The growth of the frequency-detuned Tollmien-Schlichting waves in the upper-branch-

scaling regime is governed by the quasi-equilibrium amplitude equations (6.11) and (6.12).

However, this initial quasi-equilibrium stage will be eventually followed by the non-equilibrium

critical-layer stage where the amplitudes are determined by the integro-differential equations

(3.1) and (3.2) (Goldstein 1994; Wu et al. 1997; Lee 1997a).

If we put

^

_i_= Lise×p(_j_), B 3 = Bs exp(i32_), (6.16)

the equations (6.11) and (6.12) can be rewritten as

i (1 _ 2r sin2 0) (tan2 O) ( 1__1/3 1 _ -

Bj_ - k2dB s ----0,

where

= dxle_×O-g)(=-Z,)As(xl)Ae(xl).

.t_4q ,(6.17)
g=-J,g_s

(6.18)

(6.19)
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Asin §4,wecanshowthat

2i _ [2A4q - A3(_)I_(_ ) + 0([_0- _)]-2),
20 _)

in the large frequency-detuning limit (when 120- g)l is large).

(6.20)

7. Nonlinearly-generated low-frequency modes

Goldstein & Choi (1989), Goldstein & Lee (1992) and Wu (1992) showed that the

nonlinear interaction between oblique modes of the same frequency produces a spanwise-

periodic mean-flow distortion. However, the nonlinear interaction between the frequency-

detuned oblique modes generates low-frequency modes in addition to the spanwise-periodic

mean-flow distortion. The frequencies of these nonlinearly-generated modes are equal to

the frequency differences between the primary oblique modes, therefore, they are very low

(of O(a"+2)). From (2.8) and (I.7.11) along with (2.2), we can show that

/_ fAU0(2);_,t (_) -_- oo vo,2;,,tn"_''rr(2)d,, = -47rr(sin 2 8) dXlT-Ll(:_ - Xl)A,+e(xl)A_(xl), (7.1)
oo oo

// //aVo¢_l_,_(_)- Vo_,_j,7 = 4i_¢(sin_0) d_Uo(_ - _),%+_(_l)A;(_), (7.2)
OO --OO

AW(2) f__ (2)0,2;j,t = __ W_),2;_,tnd_l = 0, (7.3)

where

_0 "_
"Hn(x.) - d_.e-__i_3/3 (_ _ _)n, (7.4)

8, _ and A are defined in (1.4) and (1.12), 7/is defined by (I.7.1) and r (given in (I.7.18)) is

equal to one. We can also show from (7.1) and (7.2) that

A v(2) _= i0 (7.5)
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Thestreamwiseevolutionof A 3 is determined by solving the frequency-detuned ampli-

tude equations (3.1) and (3.2), therefore, the velocity jumps (7.1) and (7.2) are determined

from the nonlinear critical-layer interaction. In order to match with these nonlinearly gen-

erated jumps, the low-frequency modes in the inviscid wall layer (where y = aY) must be

written as, for Y>Yc,

2J f : (2)4- "_

u0,2=a 3r+a _ __Re_[Uo,2;j,e(Y, Sz)ei3(_-tl/2)j cos[2Z+(j+2g)za], (7.6)
3=-2J g:- 1

2J

a4 +3 fi' (2)± [2z + + 2 )zl] (7.7)
vo,2-- E ERe_. 0,2u,e( , ) sc°s ,

3---2J f:-I

along with similar forms for w0,2 and Po,2, where tl(= a_+2xSt) and zl(= ar+lv_az/4) are

defined by (I.5.24),)_ is defined by (1.12) and _.-1 denotes 7_.min(J-_'J)f=max(-J,-J-3) a_ WaS given in

(I.6.20). The spanwise velocity w0,2 and the pressure Po,2 are continuous across the critical

layer (see (7.3) and (I.7.16)). The magnitude of the streamwise component u0,2 given by

(7.6) is as big as that of the primary oblique mode (see (I.5.30) where _o,2;_,_ _r(2)+ ei3_: O,2;j,f 1"

The nonlinearly-generated low-frequency modes are functions of the slow time tl and the

magnitude of their frequencies is of O(a_+2).

: (2)+ : (2)+
The shape functions Uo,2;_,_ and Vo,2;_,e are discontinuous at the critical level Y - Y_.

We can show from (I.6.5) - (I.6.7), (I.6.14) and (I.B2) that they have to satisfy the following

equations

= (2)+ ,.. =(5)- 2t_3,- 2

Vo,2;3,t[Y -_- Yc "1") - Uo,2;_,_(Y = YZ) = -_-t _an 0_A)'r(2)2 _0,2;3,f'

.- (2)-{- ,_. : (2)-- /_4_,. 2

V0,2;_,_tr = Y+) - Vo,2u,e(Y - Yj) = --_[_an 0_AV. (21-- i_ 0,2;3,f'

(7.s)

(7.9)

where Art(2) and AV(2)_'0,2;j,t _'0,2;:,e are given by (7.1) and (7.2), M is given by the phrase below

(1.13) (also in (I.7.5)) and k is the normalization parameter introduced in (1.12).
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In the upstreamlinear regionwhereA s is given by (3.14), the critical-layer jump

A Tr(2) in (7.1) becomes, as _ --* -oc,
"J0,2;3,_

-. r
,_0,2;,,,= (_(s,n 0)Hi[ (2_):/3 l

a_+la;

(2-ob-½_:_)
2exp [(2_ob- ½D_)_] , (7.10)

where Hi is the Airy function (Abramowitz & Stegun 1965, p.448). In the inviscid limit

where _ = 0, (7.10) can be written as

i --= o)(2,0,- :Jx)
-3

5,+ig_exp [(2"oh- ½IX)X]• (7.11)

The transverse velocity jump AV(2)_'0 2 " can be obtained by differentiating (7.10) and (7.11), ;Jt_

with respect to _ as shown by (7.5). The streamwise growth rates of A rr(2) and AV. (2)
v 0,2 ;y,l 0,2 ;3,1

in the linear region are twice the linear growth rate of the oblique mode.

Near the singular point the viscous effect becomes small and the amplitude is given by

(5.1). We can show that the jump (7.1) becomes, when _ --. _s,

Art(2) = _ 47rr(sin 20)5_+t_ 1 (7.12)
v°'2;_'_ (3 + iA¢_,t)(4 + iA¢_,z)(5 + iA¢_,t) (_s - ¢.)3+iA%.,,

where we have put A¢3,t _ ¢3+l - ¢_.

The numerical evaluation of the velocity jumps Art(2) and AV, (2) will be presented
'_ 0,2;j,£ 0,2;3,l

in §9 along with the numerical solutions of the amplitude equations.

The analysis in the critical layer only determines the critical-layer jumps of the stream-

wise and transverse velocities of the low-frequency (spanwise-periodic) modes. The com-

plete solutions of the nonlinearly-generated low-frequency modes can be obtained from the

multi-layer analysis (Wu 1993). When r = 3 and A defined by (1.8) is O(1) in the single-

resonant-triad-interaction case (Goldstein & Lee 1992), we need to consider the steady

spanwise-periodic (mean-flow-distortion) mode in the potential region where y = []/a, the
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main boundarylayer wherey = 0(1) and the viscous wall layer where y = a3] _ in addi-

tion to the inviscid wall layer of O(a) and the critical layer of O(a4). The viscous wall

layer, which is thicker than the viscous Stokes layer for the oblique and plane waves of the

resonant-triad, is required in order to satisfy the wall boundary conditions. (The inviscid-

wall-layer solutions of the streamwise and spanwise components become singular at the

wall.) The three-dimensional boundary-layer equations in the viscous wall layer must be

solved with the no-slip boundary conditions at the wall and appropriate boundary condi-

tions on the upper edge of the layer in order to match with the solutions in the inviscid

wall layer. The transverse velocity on the upper edge of the viscous wall layer is determined

internally by the boundary-layer equations themselves and so its value can not be given as

a boundary condition as was done in Wu (1993). It is interesting to note that the stream-

wise and transverse velocity components in the inviscid wall layer, at leading order, become

equal to zero where Y > Yc but non-zero where Y < Yc (Lee 1997c). Thus, the nonlinear

interaction between oblique modes of the same frequency produces, at the leading order, the

spanwise-periodic mean-flow distortion only below the critical layer. The non-zero velocities

at Y = Yc- will be determined by matching with the critical-layer jumps.

Since the critical-layer jump of the spanwise-periodic mean-flow distortion is deter-

mined from the solutions of the amplitude equations, which become singular at a finite

downstream position, the nonlinearly-generated spanwise-periodic mode becomes very large

near the singular point. When the value of the local-growth-rate exponent r becomes 9/10,

the streamwise velocity of the mean-flow distortion becomes as big as the base mean flow

near the wall. Therefore, the nonlinearly-generated spanwise-periodic mode and the base

mean flow start to interact nonlinearly in the nonlinear viscous wall layer whose thickness
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is of O(a 3T/1°) (Lee 1997c). This nonlinear viscous wa_ layer will be separated into two

layers (inviscid nonlinear layer and the viscous nonlinear layer) in the later downstream

region. The details of the evolution of this nonlinearly-generated mode will be presented in

a forthcoming paper.

8. Numerical solutions of the quasi-equilibrium amplitude equations

The quasi-equilibrium amplitude equations derived in §6 are solved numerically. The

frequency-detuned amplitude equations (6.11) and (6.12) determine the streamwise evolu-

tion of a system of frequency-detuned resonant-triads of the Tollmien-Schlichting waves.

A predictor-corrector method (see Gear 1971) is used to solve the oblique-mode ampli-

tude equation (6.11) subject to the upstream condition (6.15), along with the linear plane

wave given by (6.14). As in Lee (1997a), the Adams-Bashforth method was used for the

predictor step and the Adams-Moulton method was used for the corrector step. The typical

streamwise grid size is 0.002 and the streamwise integration starts about _ = -20.

The numerical results in this section are obtained when _ = 1, kob = 4/5 and k2d = 1.

The exact linear growth rates can be obtained from (6.13) for the specific problem. We

have also put _ = r/3 and r = 1 (see (1.4) and (I.7.18)). The initial amplitudes of the

plane and oblique modes are /_ = 1 and 5_ = 0.01 exp(br/4) for all j. We have put the

argument of the initial oblique-mode amplitude to be r/4 radian since it gives the most

effective parametric-resonance growth of the oblique modes as shown in Lee (1997a).

The general behavior of the solutions of the quasi-equilibrium amplitude equations in

this multi-resonant-triad case is the same as in the single-resonant-triad case (Mankbadi

et al. 1993; Wu 1993; Lee 1997a). The upstream linear growth of the oblique modes is
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enhanceddueto the parametric-resonanceeffectwhenthe planewaveamplitudesbecome

sufficientlylarge.Theself-interactionbetweenthefrequency-detunedobliquemodescauses

the oblique-modeamplitudesto becomesaturated,whichthengrowlinearly with oscilla-

tions.Meanwhile,the planewavecontinuesto growlinearlyin theentireregion.

Figure1showstheresultsof the nonlinearinteractionbetweentwofrequency-detuned

resonant-triadswhen3 = 0 and 1. The solution of the single resonant-triad interaction is

plotted as the dotted curve. The linear oblique-mode amplitude is plotted as the dot-dashed

curve. Both plane-wave amplitudes /_0 and /_1 grow linearly as given by (6.14). In figure

la, the result when the frequency-detuning factor _ is equal to zero is plotted as the dashed

curve (A0 and A1 are identical). The saturation amplitude is smaller than that of the single

resonant-triad interaction because of the doubled self-interaction effect when _ = 0. For

the non-zero values of :_, the saturation amplitude of -40 is larger than that of -41- The

frequency of the 0th resonant-triad is lower than that of the 1st resonant-triad (see (1.6)).

When the frequency detuning is very large the multi-mode-coupling term Mq in (6.17)

becomes very small. Thus, the resonant-triads grow almost independently of each other

and the amplitudes 3:o and -41 become close to that of the single resonant-triad interaction

(within the range of the computation) as shown in figure ld.

The numerical results of the three and five resonant-triad interactions are given in

figures 2 and 3, respectively. The straight lines for the plane wave amplitudes are not

plotted. The oblique-mode amplitude for the single resonant-triad interaction is plotted as

the dotted curve. Both figures 2 and 3 (and figure 1) show that the saturation amplitude

of the oblique mode of lower frequency (i.e. the one that has the lower value of 3) is larger

than that of higher frequency.
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Sincethe effectof the spanwise-wavenumber(or propagationangle)detuningis not

includedin this analysis,the oblique-modeamplitudesIA31are the samefor all 3 in the

parametric-resonanceregion. The spanwise-wavenumberdetuningcanbe includedby re-

laxingthe condition(I.5.16).The instability waveswhose(scaled)spanwise-wavenumbers

aredetunedby O(a r) share the same critical layer and, thus, nonlinearly interact.

9. Numerical solutions of the non-equilibrium obllque-mode amplitude equa-

tions

The results of the numerical computations of the frequency-detuned oblique-mode am-

plitude equation (3.1) will be presented in this section. The critical-layer velocity jumps

(7.1) and (7.2) of the nonlinearly-generated low-frequency (spanwise-periodic) modes will

also be evaluated.

We have observed in the single-resonant-triad-interaction analyses by Goldstein & Lee

(1992) and Lee (1997a) that the self-interaction between oblique modes is mostly responsible

for the explosive growth of the amplitudes near the singular point. Therefore, we will

investigate the effect of the frequency-detuned self-interaction term first. There are, of

course, many important shear flows (i.e. compressible free shear layer, supersonic boundary

layer and others) where the the oblique mode is the most unstable wave and the self-

interaction is the dominant nonlinear interaction.

It is convenient to choose the normalization parameter k, which was introduced in

(1.12) (or (I.7.1)), to be

2_rY_(i (2) (9.1)
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andwehaveshownin (1.4)and(I.7.18)that

8 = r_/3, r = 1. (9.2)

If we put (I.7.58), (1.12), (9.1) and (9.2) along with B 3 = 0 into (3.1) and (3.13), the

frequency-detuned non-equilibrium amplitude equation of the oblique modes can be rewrit-

ten as, for -J _<3 _< J,

A,_. : (4 _ ½,YC)A,- _i y_ [ dxl dx2[K2(_,xl,x2)Aa(xl)Ae(x2)A_(Xl + x2- _)
g=_ j 4 -oo

+K_(_,_i,_=)ae(_)a,(_)A_(_+ _=- _)1,(9.3)

where the kernel functions K= and I(3 are given by (3.9) and (3.10) in the inviscid limit.

The above equation (9.3) will be solved with the linear upstream condition (3.14), which

can be rewritten as

[(4_ (9.4)

The effects of the magnitude of the initial amplitudes [5:I and the frequency-detuning

factor _ on the streamwise evolution of the amplitudes A a will be shown in the following

subsections when _ = 0.

As in before (Goldstein & Lee 1992; Lee 1997a), the Adams-Moulton method (see

Gear 1971) is used to advance the solutions downstream from the prescribed upstream

linear state. The double-integral term on the right-hand side of (9.3) is computed using the

Newton and Cotes' integration formula (see Kopal 1961). The numerical computation starts

about _ = -15 and the typical streamwise grid size is 0.01 (or 0.04 in the 51-pair-interaction

case).
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9.1. Inviscid two-, three- and five-pair interactions

The numerical solutions of (9.3) with (9.4) in the inviscid case (X = 0) are presented when

the instability waves are composed of the frequency-detuned two, three and five pairs of

oblique modes.

Figure 4 shows the results of nonlinear interaction between two pairs of oblique modes,

i.e. 3 = 0 and 1, when the initial amplitudes are the same a0 = al = 1. The solution of the

single-pair interaction is also plotted as the dotted curve. When the frequency-detuning

factor 9_ is equal to zero, the 0th and 1st amplitudes A0 and A1 become identical as shown

in figure 4a. They become singular at earlier streamwise position than in the single-pair-

interaction case because of the doubled self-interaction effect. This solution when _ = 0 is

replotted as the dashed curve in figures 4b, 4c and 4d.

For the nonzero values of _, the initially same linear amplitudes Ao and A1 start to

diverge when the effects of the frequency-detuned self-interaction become large as shown

in figures 4b and 4c for _ = 2 and 5, respectively. The multi-mode-coupling term .A4s in

(4.2) becomes O(1) and the frequency-detuned oblique pairs start to interact nonlinearly

when the local-growth-rate parameter _r_ becomes as large as the scaled Strouhal number

difference gl - g (that is equal to (sa - s)/a 2, see (1.5)). When _ = 2 shown in figure 4b,

the amplitudes A0 and A1 become nonlinearly interactive at earlier streamwise position (or

at smaller growth rate) compared to the _ = 5 case (figure 4c). In figure 4c, the growth

rate of IA01 in the streamwise region where 1 < _ < 3.3 is enhanced mainly due to the

self-interaction between the oblique modes of the 0th pair. Similarly, the self-interaction

between the oblique modes of the 1st pair is responsible for the enhanced growth of IAll

38

!_| I i!



there. Sincethe frequencydetuningis relativelylarge (_: = 5), the coupled interaction

between two pairs occurs in the later downstream region, _ > 3.3, where the growth rates

become sufficiently large. Figures 4b and 4c show that IA01 is larger than IAll (except

1 < _ < 3.3 in figure 4c). The frequency of the 0th pair is lower than that of the 1st pair

as given by (1.6).

When the frequency difference is very large, the coupled interaction between two oblique

pairs does not occur until the growth rates also become very large. The results of :_ = 100,

given in figure 4d, show that IA01 and ]A1] grow almost identically as in the single-pair-

interaction case. The solid curve is not distinguishable from the dotted curve that is the

solution of the single-pair interaction.

It can be observed in figure 4 that both amplitudes become singular at the same

streamwise position for all values of :_. The frequency difference between two pairs delays

the singularity.

The streamwise evolution of the oblique-mode amplitudes are plotted in figure 5 for

the three-pair interaction when 3 = 0, 1 and 2. The results are independent of the specific

value of 3 of the center frequency, thus, 3 = -1, 0 and 1 instead of the current choice

will produce the same results as those in this figure. The initial amplitudes are the same,

_0 = _1 = _2 = 1, as in the two-pair-interaction case given in figure 4. The solution of the

single-pair interaction is plotted as the dotted curve and that of the three-pair interaction

with :_ = 0 is plotted as the dashed curve. Similar to the results in figure 4, the coupled

interaction between frequency-detuned pairs occurs at smaller amplitude when _ = 2 (figure

5a) than in the )_ = 5 case (figure 5b). When )_ = 5 the singularity occurs at later streamwise

position compared to the case when )_ = 2. The magnitude of the 0th amplitude IA01 (of the
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lowestfrequency)is thelargestandthat of the2ndamplitude]A21(ofthehighestfrequency)

is thesmallestin thefrequency-detunednonlinear-interactionregion.Theamplitudeof the

lowestfrequency,A0, is likely to grow monotonically. The growth rate of IA2] in figure

5a becomes negative in a short period. It is interesting to observe in figure 5b that IAo[ is

almost identical to the single-pair solution, but [All and [A_ I are smaller than that. In figure

5b, the singularity occurs at nearly the same position as that of the single-pair solution.

Figure 6 shows the results of the five-pair interaction when 50 = al = fi2 = 53 = a4 = 1

with the results of the single-pair interaction (dotted curve) and the five-pair interaction

when :_ = 0 (dashed curve). The amplitude of the 0th pair IAol is larger than the others,

however, the highest-frequency amplitude IA41 is not necessarily the smallest one (cfi figure

5). The amplitude IA41 still belongs to the group of smaller amplitude in the frequency-

detuned-interaction region. Note that when _ = 4, shown in figure 6b, all amplitudes are

smaller than the amplitude of the single-pair interaction and the singularity occurs even

at later streamwise position than in the single-pair case. The singular point moves closer

to that of the single-pair interaction for larger values of )_ (the results are not shown).

The solutions of ten-pair interaction show the similar behavior although the results are not

presented.

Figure 7 shows the solutions of the two-pair interaction when the initial amplitude of

the lower frequency (a0 = 1) is larger than that of the higher frequency (al = 0.8 and

0.5 for figures 7a and 7b, respectively) and )_ = 2. The single-pair solutions are plotted

as the dotted curves for the respective initial amplitudes. (The dotted curve that has the

same initial value as the curve (i) in figure 7a, for example, is the single-pair solution with

50 = 1 and the other dotted curve is the single-pair solution with the initial amplitude of

4O
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0.8.) The frequency-detunedinteractionbetweentwo pairs causesthe growthrate of the

higher-frequencypair to becomenegativein a shortperiodin both cases.Themagnitude

of the 0th amplitudeIA01is alwayslargerthan [All, but both amplitudesbecomesingular

at the samestreamwiseposition.

Theoblique-modeamplitudesareplotted in figure8 when_1(= 1) is larger than a0,

which is equal to 0.8 or 0.5, and _ = 2. Since the frequency-detuned self-interaction between

two pairs initially enhances the growth of the lower-frequency amplitude A0 and reduces

that of the higher-frequency amplitude A1 (as in figure 4), IA01becomes larger than IA1] in

the later downstream region when 50 = 0.8 and al = 1 as shown in figure 8a.

The amplitudes A0, A1 and A2 of the three-pair interaction plotted in figure 9 show

that IA0] is always larger than IA2[ although they have the same initial value (ao = _2 = 0.7

and 0.5; _1 = 1). Figure 9a shows that the initially small 0th amplitude ]A01 becomes larger

than the 1st amplitude IAll in the downstream region similar to the two-pair-interaction

solutions given in figure 8a.

Figure 10 shows the effect of :_ on the streamwise evolution of the amplitudes in the

three-pair-interaction case when _0 = fi2 = 0.7 and fil = 1. The single-pair-interaction

solutions with the respective initial amplitudes are plotted as the dotted curves. The onset

of the singularity is delayed as _ is increased from 0 to 3 as shown in figure 10a. When

:_ = 5, the singularity occurs at earlier streamwise position compared to the case when

= 3. The amplitude ratios IAo/Al[ and [A2/All remained the same when _ = 0. Figure

10e shows that the amplitude ratio of the higher-frequency mode IA2/All is smaller in the

downstream region than the upstream value of 0.7 for all _: considered. The ratio IAo/All

for the lower-frequency mode becomes larger than the upstream value when :_ is equal
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to 1, 2 or 3, but it becomessmallerthan 0.7when)_= 5 as shown in figure 10c. The

amplitude IA21 of the higher-frequency pair exhibits more oscillatory behavior than IAo] of

the lower-frequency pair as given in figures 10b and 10d.

9.2. Inviscid 5I-pair interaction

The system of 51 frequency-detuned amplitude equations (9.3) where J = 25, i.e. 3 =

-25,..., 0,..., 25, axe numerically solved when _ = 0. As we mentioned before the specific

value of 3 of the center pair (0 in this case) does not affect the results. The initial amplitudes

a3 in (9.4) is given by the Gaussian function as

_ =_ exp[-0 - _1)_/50]+ _ for - 25.<_.<25, (9.5)

in the single-peak cases (figures 11 and 12). The second Gaussian function

1 (9.6)a3 = _C2exp [-0- n2) 2/50] + i-6,

is superimposed on top of (9.5) for the initial amplitudes in the double-peak cases presented

in figures 13 to 15.

The Strouhal number difference between the 3th and the 0th pairs of oblique modes is,

from (1.6) and (1.12),

•_ - _ - _3R&rj, (9.7)

where _ is given by (9.1).

Figure 11 shows the numerical solutions when )_ is 0.2 and nl in (9.5) is zero. The mag-

nitude of the amplitudes [As[ versus 3 at different streamwise positions are plotted in figure

lla. The Streamwise evolution of the magnitude of the -20th, -10th, 0th, 10th and 20th

amplitudes, [A(_2o)[ , ]A(-10)[, ]Ao], ]A10] and ]A2o[, respectively, is plotted in figure 1lb.
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Figureslla and llb showthat the amplitudesof the instabilitywaves,especiallythoseof

the lower-frequencymodes(i.e. with smaller3),aregreatlyenhanceddueto thefrequency-

detunedself-interaction.The initially very small amplitudesof the -25th to -15th pairs

becomelargeasthe instabilitywavesevolvedownstream.Theratio IA(_ls)/A(_25)l,which

is nearlyequalto onein theupstreamregion,becomeslargein the downstreamregion.The

initial symmetricshapeof the Gaussianfunctionbecomesasymmetricand the maximum

amplitudeoccursat lowerfrequency(at j = -2 when _ /> 1) in the downstream region.

In the upstream positions, up to about _ = 0.5, the magnitude of the -20th amplitude is

nearly equal to that of the 20th pair as shown in figure llb. However, at later downstream

positions (for example, at _ = 2.52 and 2.96), IA(_2o)I becomes much larger than IA20] as

well as ]A(-10)] becomes larger than IA10] as given in figure lia. The amplitude ]A201 is still

larger than the linear one at these two downstream positions (figure llb). All amplitudes

become singular at the same finite downstream position.

The effect of larger frequency-detuning factor is shown in figure 12 when )_ = 0.5 and

nl = 0. Because of the larger detuning, the frequency-detuned nonlinear interaction occurs

at later downstream position in figure 12b compared to the previous _ = 0.2 case given in

figure llb. Figure 12a shows that the frequency-detuned interactions enhance the growth

of the lower-frequency pairs more than that of the higher-frequency p_rs similar to the

previous results. The frequency where the maximum amplitude occurs becomes lower as

the oblique modes evolve downstream. The amplitudes become singular at later downstream

position compared to the smaller frequency-detuning-factor case given in figure 11.

Figure 13 shows the evolution of the double-peak initial amplitudes when _ = 0.2,

nl = 5, n2 = -5 and C2 = 1. The amplitude [A(-5)] is equal to IAsI in the upstream
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region,but the formerbecomeslarger than the latter in the downstreamregion. The

amplitudeof the -6th pair is the largestat _ = 2.8. Figure 14 shows the results when the

higher-frequency maximum of the initial amplitude, 55, is larger than the lower-frequency

one, a0, and :_ = 0.2, nl = 5, n2 = 0 and C2 = 0.8. Although the 0th amplitude is smaller

than the 5th amplitude in the upstream region, IA01 eventually becomes larger than IAsI

in the later stage as was also observed in figure 8 in the two-pair interaction. Figure 15,

which are the numerical results when _: = 0.2, nl = 0, n2 = 5 and C2 = 0.8, shows that

the initially small higher-frequency peak (at 3 = 5) becomes less and less noticeable as

the instability modes evolve downstream. The results in figures 13 to 15 also exhibit the

enhanced growth of the lower-frequency pairs.

The results of these frequency-detuned multi-pair interactions show that all instability

modes become singular at the same finite downstream position. However, as we all know,

the flow does not support extremely large instability waves. Near the singular point (where

xs - x = O(a-1)), the amplitudes of the instability modes become as large as the base

mean flow in the inviscid wall layer (see (I.5.30) and (5.1)). The next stage will be the

triple-deck stage as shown by Goldstein & Lee (1992) and Wu et al. (1997). The flow in

this stage is governed by the equations which are elliptic in the streamwise direction. The

flow may enter the triple-deck stage before we can fully observe the explosive growth of the

instability modes predicted by the frequency-detuned non-equilibrium amplitude equations

of this analysis. The explosive growth occurs in a very short streamwise distance as the

numerical results indicate.
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9.3. Critical-layer jumps of the nonIinearly-generated low-frequency modes

When _ = O, the velocity jumps across the critical layer of the low-frequency modes, (7.1)

and (7.2) can be rewritten as

fAr_(2) = -_" dxl(_2 - Xl)2A3+t(xl)A_(xl), (9.8)
_v0'2;3'g oc

fAv (_) = 3i7r dzl(e- xl)A_+e(xl)A_(zl), (9.9)
_ ' 0,2;3,1

where we have used (9.2). The jumps Art (2) and Av (2)_v0,2;j,_ _'o,2;_,_ are obtained by integrating

(9.8) and (9.9) using the numerically calculated oblique-mode amplitudes A_.

Figure 16 shows the numerical results of the single-pair interaction when 5o = 1. The

nonlinear interaction between a pair of oblique modes of the same frequency produces the

steady spanwise-periodic mode. The oblique mode amplitude A0 that was plotted as the

dotted curve in figure 4 is replotted as the same dotted curve. The streamwise growth rates

of AU(2);0,0 and AV, (2)o,2;0,0 are twice that of the oblique mode in the linear upstream region as

given by (7.11). Both streamwise and transverse jumps of the spanwise-periodic mean-flow

distortion become singular at the same singular point of the oblique-mode amplitude.

The nonlinear interaction in the critical layer between three frequency-detuned pairs

of oblique modes produces nine low-frequency (spanwise-periodic) modes. The numerical

results of the three-pair interaction when a0 = 51 = a2 = 1 are given in figure 17 for )_ = 2

and in figure 18 for :_ = 5. The streamwise evolution of the amplitudes was plotted in figure

5. If we put the subscripts 0 of A 3 to be 0, 1 and 2, we can show from (7.6) and (7.7) that

the subscripts (3,_) of the non-zero AU(2)o,2;_,_and AV, (2)0,2;.7,lare (-2,2), (-1,1), (-1,2), (0,0),

(0,1), (0,2), (1,0), (1,1) and (2,0). Figures 17 and 18 show that ATT(2)v0,2;_,_and [AV(2:;3,_[

with larger value of [31are smaller than those with smaller 131in the linear upstream region
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aswaspredictedby (7.11).Themodewith j = _ = 0 is steady and its critical-layer jump is

larger than the other components in most of the region. As in figure 5 the results in these

figures are independent of the specific value of 3 of the center frequency.

10. Concluding remarks

A system of resonant-triads can interact nonlinearly between themselves in the common

critical layer if their frequencies (of the fundamental plane waves) are different by a factor

whose magnitude is of the order of the growth rate multiplied by the Wavenumber of the

instability waves. The long-wavelength small-growth-rate instability modes in boundary

layers with and without mean pressure gradient are analyzed using the generalized scaling

of Lee (1997a).

In this part of the study, the system of partial differential critical-layer equations along

with the jump equations given in §7 of Part 1 is solved analytically to obtain the frequency-

detuned amplitude equations. The amplitude equations are similar to those obtained by

Goldstein & Lee (1992) and Wu (1992) for the single resonant-triad interaction. However,

in the multi-resonant-triad-interaction case, the frequency-detuned self-interaction term in

the oblique-mode amplitude equation and the frequency-detuned mutual-interaction term

in the plane-wave amplitude equation are composed of 2(2J + 1) terms (see (3.1) and (3.2)).

The kernel functions for the self-interaction terms are divided into two parts.

When the scaled-Strouhal-number difference between resonant-triads is larger than the

local-growth-rate parameter a T, the multi-mode-coupling terms Ms, M_ and .A4b in (4.2)

and (4.3) become negligibly small (see (4.7) and (4.8)) and the instability waves of an

individual resonant-triad grow independently of the other resonant-triads.
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The effectof the self-interactionbetweenfrequency-detunedpairs of obliquemodes

wasinvestigatedby solvingthe non-equilibriumoblique-modeamplitudeequationsin the

inviscidlimit. As givenin the previoussection,the growthof the lower-frequencyoblique

modeis moreenhancedthan that of the higher-frequencyin most cases.It is shownthat

all amplitudesbecomesingularat the samefinite downstreampositionregardlessof their

initial values.The frequency-detuningeffectdelaysthe occurrenceof the singularity.The

singularityin anappropriatelyfrequency-detunedmulti-pairinteractionoccursevenat later

downstreamposition than in the single-pairinteractionalthoughthe sum of the initial

amplitudesin theformercaseis muchlarger than in the latter case.

Thoughthe analysiswascarriedout with the non-equilibriumcritical-layerscalings,

the frequency-detunedquasi-equilibriumamplitudeequationscanbe obtainedby taking

theviscouslimit of theO(1)-viscosity non-equilibrium amplitude equations. The numerical

computation of the quasi-equilibrium equations shows that the saturation amplitude of the

oblique mode of lower frequency is larger than that of higher frequency. The frequency-

detuned resonant-triads of the ToUmien-Schlichting waves in the initial critical-layer stage

is governed by the quasi-equilibrium amplitude equations, however, the later downstream

stage will be eventually governed by the non-equilibrium dynamics as shown by Goldstein

(1994), Wu et al. (1997) and Lee (1997a).

Corke _z Gruber (1996) and Liu & Maslowe (1998) show that the resonant-triad theory

of Goldstein & Lee (1992) is in good agreement with their experimental and numerical

results in adverse-pressure-gradient boundary layers. Corke & Gruber (1996) show that

faster linear growth of the plane wave accelerates the parametric-resonance growth of the

subharmonic oblique modes and induces larger saturation amplitudes of the oblique modes
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comparedto the Blasiuscasegivenin Corke& Mangano(1989). Usingthe parameters

in Corke& Gruber (1996), we can show that the parametric-resonance effect is already

much larger than the linear-growth effect (in the oblique-mode amplitude equation) at their

first measured streamwise position. Faster (than linear) growth of the oblique modes at the

beginning was observed in the experiments and also confirmed by the numerical simulations

of Liu & Maslowe (1998).

The numerical solutions of the non-equilibrium amplitude equations show that the ex-

plosive growth of the instabilities occurs in a very short streamwise period near the singular

point. Therefore, in most flow conditions for the resonant-triad interaction, the explosive

growth may not be clearly distinguishable before the scalings of this analysis break down

as the experimental (Corke & Gruber 1996) and numerical (Liu _z Maslowe 1998) results

indicate. However, the enhanced growth of the plane wave, especially in Figure 10b of Corke

& Gruber (1996), proves that the oblique modes are large enough to produce the mutual-

interaction and back-reaction effects on the plane wave, thus, there exists self-interaction

effect. The explosive growth is the downstream asymptotic behavior of the self-interaction

(or fully-coupled interaction) effect. In fact, as the finite-viscosity numerical solutions of Lee

(1997a) (for example, his Figures 3 and 4) show, the fully-coupled interaction initially, in a

very short period, reduces the growth rates of the oblique modes, which is more apparent

when the viscous effect is large. The self-interaction effect can also be identified by the

spanwise-periodic wall shear stress and the generation of the spanwise-periodic mean-flow

distortion and nonlinear (very) low-frequency modes. The saturation of amplitudes, shown

both experimentally (Corke & Gruber 1996) and numerically (Liu & Maslowe 1998), will

be governed by subsequent nonlinear dynamics but the frequency-detuned self-interaction
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betweensaturating/saturatedobliquemodesandneighboringfrequencies(of smallampli-

tudes)maystill beactivethereto acceleratethe growthof the latter.

Thepresentanalysisismorefocusedon thefrequency-detunedself-interactionandthe

summationdoesnot appearin the parametric-resonancetermin the oblique-modeampli-

tude equation(3.1). We canextendthe analysis,by relaxingthe condition(I.5.16), to

includethespanwise-wavenumberdetuning.It canbeshownthat theparametric-resonance

interactionbetweena bandof fundamentalplanewaves(_ + Awl) and a band of subhar-

monic oblique modes (w/2 =t:Aws) can accelerate the growth of the oblique modes whose

frequencies are within w/2 =l=(Awl + Aws). The growth of a wide frequency range of oblique

modes will be enhanced by subsequent interactions, for example, between the plane waves

and the oblique modes of w/2 4- (Aw I + Aws). Kachanov & Levchenko (1984) (also in the

review by Kachanov 1994) showed that the (subharmonic) resonance is very wide in the

frequency spectrum and it can amplify even (quasi-)subharmonic modes whose frequency

detuning is close to one half the subharmonic frequency.

In an incompressible boundary layer, the plane wave is the most unstable mode. How-

ever, three-dimensional modes of small propagation angles are more unstable than the plane

wave off the most unstable frequency (see (3.13)). Therefore, in a natural flow, the linear

upstream flow may be dominated by an oblique mode whose propagation angle is relatively

small. The resonant-triad analysis of this paper (also of Goldstein & Lee 1992, Wu 1992

and Lee 1997a) can be generalized for three (pairs of) oblique modes instead of the usual

fundamental plane wave and a pair of subharmonic oblique modes. The three (pairs of)

oblique modes, whose streamwise and spanwise wavenumbers are a,/2 and/3,, respectively,

share the same critical layer, provided (aJ2) 2 + _3_ are the same for all z = 1, 2 and
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3. If weput the propagationangleof the first modeto be 81 (=- tan-l(2_l/c_l)), where

0 _<81< _r/6,thesecondandthird onesmustbe82= _r/3 - 81 and 83 = r/3 ÷ 61 in order

for the resonance-interaction to occur. When 61 is equal to zero, 62 and 63 become _r/3 and

the three-oblique-pair resonant-triad reduces to the traditional resonant-triad. The role of

the first oblique mode is similar to that of the plane wave. When the amplitude of the

first mode becomes O(a4_+1), the (generalized-)parametric-resonance interaction enhances

the growth of the second and third modes as in the subharmonic-resonance analysis of this

paper. The frequency difference between the second and third modes becomes larger as

the propagation angle of the first mode 61 is increased. (This phenomenon may be very

useful to prove the existence of the critical-layer dynamics in boundary layers and free shear

flows.) When there exist three pall:S of oblique modes of different frequencies in a natural

flow, a clear A-shaped structure is hard to be observed as many unexcited flow-visualization

experiments report.

The (generalized-)parametric-resonance growth of the second and third oblique modes

allows the phase-locked interaction of Wu & Stewart (1996) to occur when their amplitudes

become 0(a7"/2+1). The phase-locked interaction can take place between the second (or

third) mode and any other lower-frequency oblique modes of the same phase speed. The

analysis of Wu _z Stewart (1996)indicate that the higher-frequency mode (i.e. the 2nd or 3rd

mode) can accelerate the growth of the lower-frequency ones. This phase-locked interaction

occurs earlier than the self-interaction. Both in parametric-resonance and phase-locked

stages, the first mode grows linearly. When the second and third modes become sufficiently

large, i.e. O(a3r+l), due to the continuous parametric-resonance interaction with the first

mode, the frequency-detuned self-interaction of this analysis becomes important and all
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obliquemodesbecomesingularat a finite downstreamposition.

It is shownin AppendixC that higherspanwise-harmonics(/kU_33)),higherspanwise-

periodicmean-flowdistortion(AU(4))andnonlinear mean flow/_/kU, (4)_0,0/,which do not exist

in the upstream region, are nonllnearly generated by the critical-layer interaction and they

grow very rapidly to become as large as the base mean flow in the inviscid wall layer at the

downstream position where the distance from the singularity xs - x is of O(a_). The mean

flow jump across the critical layer was found by Haberman (1972). It is also possible to

show that the nonlinear interaction in the critical layer generates the critical-layer jumps of

all higher harmonics and they also become of O(a) very fast in the inviscid wall layer (cf.

Smith & Bodonyi 1982).

The present critical-layer analysis shows that (i) a band of (or bands of a couple of) two-

dimensional (or small-propagation-angle oblique) modes, which dominate the upstream re-

gion of a boundary-layer-transition process especially when environmental disturbances are

relatively small, (ii) bands of oblique modes, whose growth is accelerated by subharmonic-

parametric-resonance, generalized-parametric-resonance and phase-locked interactions, (iii)

nonlinearly-generated low-frequency modes, which includes the spanwise-periodic mean-flow

distortion, (iv) nonlinear mean flow and (v) bands of higher harmonics become very large

as the instabilities evolve downstream. The growth of these linear and nonlinear modes are

still governed by the parabolic-type (in the streamwise direction) equations of this analysis.

The frequency-detuning interaction allows wider bands of modes to interact.

Near the singularity where _s-_ is of O(aT), or xs-x is of O(a -1), all these instabilities

become as large as the base mean flow in the inviscid wall layer. The flow in the inviscid

wall layer will then be fully nonlinear. Goldstein & Lee (1992) and Wu et al. (1997) showed
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that theflow in the nextstagewill begovernedbytheunsteady,inviscid,three-dimensional

triple-deckequations.

This work wassupportedby the AcousticsBranchat NASA Lewis Research Center,

contract number NAS3-98008.

Appendix A. The O(1)-viscosity kernel functions K2, K3, K4 and K5

fo_, {_-_[(_,+_,/_x_+(_,+_,)(_+_,)_,](_o(¢,,G,G)K2 = e -_(2G/3+¢2)¢_ ¢13- 2h, dG

+y;-(¢1,¢5,GI0,0))- _c(¢1,¢5,¢3)(_b(¢1,¢5,¢3)+ Y:(¢1, ¢5,¢31(1,0) + ¢1¢5) }], (A 1)

jo,2K_ = e-_(2¢1/3+¢2)¢_ (¢1 + ¢5)(_ + 2h, dGe-:_(2¢3/3+¢1)¢_¢1 (¢1 + 2¢2 -- 2_3)

-2hs jo ¢1dG {e -_¢_¢_ (ga(¢l, ¢2, G) + :'_'((1, (2, GI0, (2)) -- g¢(¢1, ¢2, (3)(gb(¢i, _'2, G)

+7$((1, G, GI(1,o)+ 2GG - GG) }], (A2)

K4 = e-4X(¢'+G)¢:[ [2( 3 + h,e -2_(_+_2/3)¢_ {-_¢1 (3_'1 + 2(2)(9¢1 + 5¢2)

+§G-r_((1, G, GIo, G, G; 3) + 2(2¢1 + G)-r$(¢l, (_, G1¢1, G, o; _))], (A3)

Ks = e-(2/3)5'[ (2¢_+G)_-2¢_] (2(1 + (2)[_1 ((1 + ¢2) + h, {3(1 (2(1 + (2)

+2.r+((1, G, GI¢I, o, o; 1))], (A 4)

where we have put, as in (2.3),

_1 = -_ - Xl, (2 = Xl - x2, h, = v sin 2 O, (A 5)
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with

Appendix B.

= /¢3+¢_ d_4e_x(2¢,/3+¢_+¢2_¢o_¢_)¢_ (_b+ ¢_ (4)
J0

[1 + 2A (¢1 - ¢'3) (¢2 + _'3 + Ca - _'b)'2] , (A6)

-_ (2_o + C2){1 + J,(G - _a)(3_1 + 2_b- _3+ 4C_)(2G - 2_ + _b+ _a)}], (AT)

O_- (_1 - Ca)(_1+ 2_2 + 3_a), (A 8)

gb ----2A_2¢3 (¢1 -- ¢3) (¢1 + I2 + _3) 2 , (A 9)

The integrals Dp, D_ and Dm in (5.2) and (5.3)

Dp = _ dxl (xl - 1) 2 (Xl) -a-2i¢_ (2xl - 1) -3+i¢: , (B 1)

l

+ (x2 - 1) (x_ + x2 - 2) (Zl) -3-i#_' (x2) -4-2i¢' (Xl + 2x2 - 2)-3+i¢'] • (B 3)

Appendix C. Critical-layer jumps of higher-order nonlinear modes

Nonlinear critical-l_yer equation (I.6.3) indicates that the third-order nonlinear mode

Re[j(3)e i(X/2+3z) appears in the expansion (I.6.15) and the fourth-order ones ReU(40 ) and
1,3
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Re/-](4)ei4z0,4, amongmanyothers,alsoappearin (I.6.16) (alsoin equation(6.12)in Lee

1997a).Hereweonly considerthe single-resonant-triadinteractioncase(J = 2 = 0 and

rio = 0) and A s will be replaced by A.

From the critical-layer analysis, we can show that

oo "_1,3,7 ,i _r dxl dx2d(zl)A(x2)A*(xl + x2 - _)
oo

e-_(_(2(1/3+_2)[_(2_l+_2)+(sin20)(...)+(sin40)(...)], (C1)

AU(o42(_)-= ooU_.o,,= _ dxllA(xl)l_[1- ,(sin_0)e-_f/3]. (C2)

A _) -- tJd,4nar] = -16_r dxl dx2 dx3 dx4
CO CO O0

[A'(x2)A(x3)A(x4)A'(x3 + x4 - x2)(_1¢32 +...) + ...], (C31

where

O(3)eiXo/2 U(4) H_ _(4),
1,3 , o,0 - 2k2r_ o,o

U(3) _H (2_r5_ 1/2
_'_= ,_%--_,,;_L,

H =-2_Y_a/(_e) 3,

_3 _- X2 -- 3;3,

¢'1 and _2 are defined in (2.3) and M is defined in (I.7.5).

U(4)o,4= kTwcH2Uo(_2, (C4)

(c5)

(c 6)

The nonlinear modes a4"+lRe(f(3)e ix�2 cos 3Z, aS_+10. (4) and a s_+lr-d4) cos4Z should
1,3 0,0 _ 0,4

be included in the streamwise velocity expansion (1.10) in order to match with these critical-

layer jumps. Near the singular point, the amplitude A is given by (5.1). Thus, these higher-

order velocities become as large as the base mean flow, which is O(a), in the inviscid wall

layer when _ - _ is O(a_).
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